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ABSTRACT 

Cross-domain analogies are a powerful method 
for learning new domains.  This paper extends 
the Domain Transfer via Analogy (DTA) 
method with the idea of persistent mappings, 
correspondences between domains that are 
incrementally built up as a system gains 
experience with a new domain.  We evaluate 
DTA plus persistent mappings by learning three 
domains (rotational mechanics, electricity, and 
heat) by analogy with linear mechanics, 
showing that persistent mappings improves 
performance. 

Keywords: Cross-Domain Analogy; 
Analogical Learning 

1 INTRODUCTION 

Cross-domain analogies are an important 

aspect of human reasoning.  They are used by 

scientists to produce paradigm shifts (Gentner 

et al. 1997; Holyoak & Thagard 1989), and by 

students in learning new domains (Gentner & 

Gentner 1983).  Textbook authors routinely 

exploit them when presenting new concepts, 

introducing a useful base domain explicitly and 

giving hints about correspondences.  

Domain Transfer via Analogy (DTA) is a 

method of learning via cross-domain analogies.  

It uses analogies between examples as evidence 

about what non-identical predicate matches 

will be productive, re-using those 

correspondences to map equation schemas and 

control knowledge from the base to the target, 

creating a new target domain theory (Klenk & 

Forbus in press).  This paper extends DTA with 

the idea of persistent mappings.  Learning a 

complex domain via analogy typically does not 

happen all at once.  The learner’s 

understanding of the analogy grows 

incrementally.  Persistent mappings represent 

the accumulation of knowledge about how the 

domains map.  They are used to constrain 

subsequent matches, so that a structurally 

consistent set of knowledge is imported.  To 

demonstrate the utility of persistent mappings, 

we show that adding them to DTA enables it to 

better learn multiple domains (rotational 

motion, electricity, heat) by analogy with linear 

motion.  Moreover, we show that providing 

advice concerning retrieval and mappings, as 

textbook authors commonly do, can lead to 

substantial performance increases. 

We begin by discussing the models of 

analogical processes used by DTA and the 

domain representations we use.  Next, we 

describe the DTA algorithm and 

implementation.  Then we describe the 

experiment and its results.  We conclude with a 

discussion of related and future work. 

2 ANALOGICAL PROCESSING 

We use Gentner’s structure-mapping theory 

(1983), which views analogy as a structural 

alignment process between two structured 

representations (the base and target), finding 

the maximal structurally consistent match.  A 

key constraint is tiered identicality, meaning 

that there is a strong preference for matching 

identical predicates.  In cross-domain 

analogies, non-identical functions are allowed 

to mach by default and non-identical relations 

match through minimal ascension 

(Falkenhainer 1988), illustrated below. 
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The Structure-Mapping Engine (SME) 

(Falkenhainer et al. 1989) models analogical 

matching.  Given a base and target, SME 

produces one or more mappings.  Each 

mapping is represented by a set of 

correspondences between entities and 

expressions in the base and target.  Mappings 

also include a structural evaluation score, 

indicating the overall goodness of the match, 

and candidate inferences, which are 

conjectures about the target using expressions 

from the base which, while unmapped in their 

entirety, have subcomponents that participate 

in the mapping’s correspondences.  SME can 

also be given a set of constraints as an input, 

consisting of required or excluded 

correspondences, which must be respected in 

the mappings it builds. 

MAC/FAC (Forbus et al. 1995) models 

similarity-based retrieval.  It is given a probe 

case and a case library as inputs, and 

optionally, constraints on correspondences.  

The first stage uses content vectors, 

automatically computed feature vectors where 

each predicate or relation of the case is 

represented by a dimension of the vector, 

whose strength is proportional to the number of 

statements using that predicate.  The dot 

product of these vectors enables MAC to very 

rapidly select a few (at most three) candidates 

from the case library.  The second stage uses 

SME to compare the structured representation 

of these candidates to the probe.  The candidate 

match with the highest structural evaluation 

score is returned as the reminding. 

Figure 1: Minimal ascension permits 

objectTranslating ↔ objectActedOn 

 

Different domains are often represented 

using different predicates, especially when they 

are first being learned and underlying 

commonalities with previous knowledge have 

yet to be found.  Minimal ascension allows 

non-identical predicates to match if they are 

part of a larger aligned structure and share a 

close common ancestor in the taxonomic 

hierarchy.  Figure 1 shows two expressions that 

SME attempts to match because they have 

identical predicates, stepUses.  In order to be 

included in the mapping, objectTranslating 

would have to correspond with objectActedOn.  

Minimal ascension allows this mapping 

because both relationships are descendants of 

preActors in the ResearchCyc
1
 ontology, the 

taxonomic hierarchy used in this work. 

3 REPRESENTING PHYSICS 

We use the contents of the ResearchCyc 

knowledge base, plus our own extensions, to 

encode problems, worked solutions, and 

domain knowledge.  Consequently, the vast 

majority of the relations and concepts we use 

were developed independently.  For example, 

the everyday objects, relations, and events that 

appear in physics problems (e.g., “rotor”, “car”, 

and “driving”) are already defined by the 

30,000+ concepts and 8,000+ predicates in the 

KB.  This reduces tailorability. 

3.1 Problems and Worked Solution 

The problem representations are direct 

translations from natural language into 

predicate calculus, without any abstraction or 

reasoning.  Consider the problem, “A 75-V emf 

is induced in a .3 H coil by a current that rises 

uniformly from 0 to I in 2 ms.  What is the 

value of I? (Problem 21-37, Giancoli 1991).  

This problem is represented by a case of 14 

facts, defining the entities, events, known 

quantities and the sought parameter. 

The worked solutions are represented at the 

level of explanations found in textbooks.  They 

are neither deductive proofs nor problem-

solving traces produced by our solver.  Worked 

solutions consist of a sequence of steps.  Each 

step has a type, context, and results.  The 

ontology of step types was developed in 

collaboration with Cycorp in previous work 

(Klenk & Forbus 2007).  The context consists 

of the facts which are antecedents for the step.  

                                                           
1 http://research.cyc.com/ 

Base Expression: 
(stepUses WS-4-1-Step-2  

   (objectTranslating Acc-4-1 Car-4-1)) 

Target Expression: 
(stepUses WS-8-5-Step-2 

 (objectActedOn Acc-8-5 Rotor-8-5)) 



The results indicate consequences of the step.  

In English, the worked solution for this 

problem is:   

1. Categorize the problem as electrical  

2. Definition of Inductance: V=L*di/dt 

3. Solve for I = .5 amps 

The formal representation for this solution 

consists of 30 facts.  Worked solutions serve as 

examples from the domain.  A central 

hypothesis of DTA is that structural similarities 

between examples can be used to create a 

domain mapping between two domain theories. 

3.2 Domain Theories for Problem-solving 

The domain theories consist of equation 

schemas and control knowledge.  The equation 

schemas are encapsulated histories from QP 

theory (Forbus, 1984), as illustrated in Figure 

2.  They can be instantiated for any 

combination of entities that satisfy the type 

constraints and conditions.  When that happens, 

the consequences are believed to hold.  Control 

knowledge provides information about how to 

use schemas, e.g. that some schema should be 

considered frame equations (Pisan 1998) and 

thus are useful points for problem solving, or 

that one schema may be preferred over another. 

Figure 2: Definition of self inductance 

encapsulated history 

 

The textbook problems used here all ask for 

the values of specific quantities.  During 

problem solving, the system attempts to find an 

equation with only the query quantity being 

unknown.  If it finds such an equation, it solves 

it to determine the answer.  Otherwise, it seeks 

relevant equations, guided by both what 

schema are available and the control 

knowledge.  The algebra routines used are 

based on Forbus & De Kleer (1993). 

4 HOW DTA + PERSISTENT 

MAPPINGS WORK 

DTA assumes a known base domain consisting 

of equation schemas, control knowledge and 

problem/worked solution pairs.  Given a 

problem that it cannot solve plus a worked 

solution in a new domain, it learns about the 

new domain using the following four steps 

(Figure 3): (1) learn the domain mapping, (2) 

initialize the target domain theory, (3) extend 

the target domain further via analogy, and (4) 

verify the new knowledge. 

Figure 3: DTA model of cross-domain 

analogical learning 

 

Adding persistent mappings changes this 

process by recording the domain mapping as 

part of what has been learned, so that when the 

next new problem in the target domain arrives, 

it uses those mappings as a starting point.  We 

discuss each of these steps in turn next. 

4.1 Step 1: Learn Domain Mapping 

Different domains are typically represented 

with different predicates and conceptual types.  

Given a worked solution from the target 

domain, DTA finds an analogous worked 

solution from a domain it understands to start 

creating the mapping between two domains.  

This works because the language in which 

worked solutions are expressed, both in 

(def-history DefOfInductance 

 :participants  

 ((theInductor :type Inductor-Idealized) 

  (theEvent :type Conduction-Idealized)) 

 :conditions 

   ((objectActedOn theEvent theInductor)) 

 :consequences 

 ((equationFormFor DefOfInductance 

 (mathEquals  

  (AtFn ((QPQuantityFn VoltageAcross)     

            theInductor            

              DefOfInductance) 

  theEvent) 

  (TimesFn ((QPQuantityFn Inductance)    

               theInductor) 

   (AtFn((QPQuantityFn RateOfCurrentChange)   

            theInductor) 

        theEvent)))))) 



textbooks and our formal versions of them, use 

the same terms for the “connective tissue” of 

the explanation.  That is, predicates like 

stepUses are generic across a wide span of 

domains. 

Using the new target worked solution as the 

probe, MAC/FAC retrieves an analogous base 

worked solution.  If there are already persistent 

mappings (i.e., this is not the first problem 

tackled in the target domain), these are 

provided to MAC/FAC as constraints.  In the 

MAC stage, this makes the content vectors 

have more overlap than they would otherwise.  

During the FAC stage, the persistent mappings 

are treated as required correspondences.  Each 

correspondence from the resulting mapping is 

added to the domain mapping when the base 

entity is mentioned in the base domain theory, 

as opposed to being something specific about 

that particular problem.  Domain mappings 

include abstraction types (e.g., PointMass ↔ 

Inductor-Idealized), relations (e.g., 

objectTranslating ↔ objectActedOn) 

quantities (e.g., ForceQuantity ↔ 

VoltageAcross), and equation schemas (e.g. 

DefOfNetForce ↔ DefOfInductance). 

4.2 Step 2: Initialize Target Domain 

DTA uses the domain mapping to initialize the 

new domain theory.  For each equation schema 

from the base domain mentioned in the domain 

mapping, DTA attempts to create a 

corresponding equation schema in the target 

domain.  All of the equation schema’s 

quantities and types must appear in the domain 

mapping for it to be transferrable.  If they do, 

DTA performs the substitutions in the domain 

mapping on the base equation schema to derive 

a new target equation schema. 

4.3  Step 3: Extend Target Domain  

Next DTA performs another analogy, this time 

between the base and target domain theories 

themselves, again using the persistent 

mappings as required correspondences.  To 

prevent non-analogous target items from 

interfering with the mapping, each equation 

schema in the target which does not participate 

in the domain mapping is prevented from 

mapping to any of the base equation schemas.  

DTA uses the candidate inferences from this 

analogy to infer more equation schemas and 

control knowledge for the target domain 

theory.  For each equation schema, if all its 

participant types and quantities participate in 

the mapping, DTA performs the substitutions 

and adds the new equation schema to the target 

domain theory.  Candidate inferences 

concerning control knowledge that refers to 

mapped equation schemas is also imported.   

4.4 Step 4: Verify Learned Knowledge 

While powerful, cross-domain analogies are 

risky and frequently contain invalid inferences.  

Therefore, DTA verifies the newly proposed 

knowledge by re-attempting the target problem.  

If this problem is solved correctly, DTA 

assumes that the learned knowledge is correct.  

Otherwise, DTA forgets the learned domain 

mapping, equation schemas, and control 

knowledge.  Attempting to find other analogs is 

of course possible, but currently our system 

stops after the first failure. 

After a successful transfer, the equation 

schemas and control knowledge are available 

for reasoning about future problems. The 

persistent mappings are also updated with new 

elements from the domain mapping, to improve 

the guidance provided to future analogies 

between that pair of domains. 

4.5 Implementation on the Companions  

We implemented DTA on the Companion 

Cognitive Architecture (Forbus et al. 2008).  

Processing in Companions is distributed, so 

that the domain reasoning is performed on one 

agent (the Session Reasoner) while retrieval is 

carried out on another (the Retriever).  The 

experimental scripts used by the Executive 

agent provide a concise way of defining 

experiments and collecting data.  

5 DYNAMICAL ANALOGIES 

We created a corpus of four domains based 

upon Olsen’s (1943) Dynamical Analogies: 

linear mechanics, rotational mechanics, 

electricity, and heat.  Table 1 includes the 

analogous quantities from these domains.  



Previously, we demonstrated accelerated 

learning using DTA between linear and 

rotational kinematics (Klenk & Forbus in 

press).  The dynamical analogy domains differ 

from the kinematics domains in several 

important dimensions.  First, the new domains 

include superficially dissimilar domains such 

as mechanical and electrical systems.  Second, 

they cover more phenomena than the 

kinematics scenarios, so a single cross-domain 

analogy between two worked solutions does 

not include all of the entities from the base and 

target domain theories.  Third, the complexity 

of the problems is higher, requiring control 

knowledge to be included in the domain 

theories.  Fourth, each of these domains has 

non-analogous elements (e.g., nothing 

corresponds to kinetic energy in thermal 

systems).   

5.1 Advice-Taking and Iterative Cross-

Domain Analogies 

Textbooks and teachers present cross-domain 

analogies iteratively and provide students with 

advice, in the form of providing some 

correspondences between the domains.  For 

example, Giancoli (1991) introduces rotational 

motion over an entire chapter, coming back to 

the analogy with linear motion repeatedly.  

During this presentation, the correspondences 

are sometimes made explicit (e.g. “Force is 

replaced by torque…Mass is replaced by 

moment of inertia…Linear acceleration is 

replaced by angular acceleration” (p. 197)). 

We have already discussed how persistent 

mappings support iteration.  Adapting DTA to 

take advice was done in two ways.  First, a 

Companion can be instructed to invoke DTA 

with a given set of correspondences serving as 

additional persistent mappings, the equivalent 

of telling a student some of the 

correspondences.  Second, a Companion can be 

instructed to invoke DTA with a given base 

worked solution, the equivalent of providing 

advice about the appropriate base problem.  

6 EXPERIMENT 

This experiment examines the following 

questions: 

 Can DTA transfer knowledge across 

domains to solve novel problems? 

 When retrieval fails, does providing the 

Companion with the analogous base 

solution lead to successful transfer? 

 What are the effects of persistent mappings 

in learning domain mappings and aiding 

retrieval? 

6.1 Materials 

The problems were selected from a variety of 

physics resources, (Shearer et al. 1971; 

Giancoli 1991; Ogata 1997; Fogiel 1994; 

"Hooke's Law, Work and Elastic Potential 

Energy" 2009), with the following goals.  First, 

Table 1: Dynamical analogy domains aligned by analogous quantities 
Linear Rotational Electrical Thermal 

Force [F] Torque [Τ] Voltage across [V] Temperature 
difference[T] 

Speed [v] Rate of rotation [ω] Electrical current level [i] Heat flow rate [q] 

Linear deflection [x] Rotational deflection [β] Electrical charge [q] Thermal energy [H] 

Mass [F=ma] Moment of inertia [T=Jα] Inductance [V=Ldi/dt] n/a 

Linear momentum  
[p=mv] 

Rotational momentum 
[p=J ω] 

n/a n/a 

Linear kinetic energy 
[Ke=.5mv2] 

Rotational kinetic 
energy[Ke=.5 J ω2] 

Inductance 
energy[Energy=.5Li2] 

n/a 

Linear compliance [F=x/C] Rotational compliance 

[T= β/C] 

Electrical capacitance 

[V=q/C] 

Thermal capacitance 

[T=H/C] 

Translational elastic 
potential [EPE=.5(x2)/C] 

Rotational elastic potential 
[EPE=.5(ω 2)/C] 

Capacitance energy 
[Energy=.5(q2)/C] 

n/a 

Linear damping [F=bv] Rotational damping 

[T=Dω] 

Electrical resistance [V=q/R] Thermal resistance 

[q=T/R] 

Power [P=Fv] Power [P=Tω] Power [P=Vi] n/a 

 



the problem set includes each of the dynamical 

analogy quantities from Table 1.  Second, the 

problems were limited in complexity to 

requiring at most three different physics 

equations.  This is consistent with textbooks 

techniques of using more basic problems when 

introducing domains.  Third, problems were 

favored which provided a worked solution, but 

worked solutions were created when necessary.  

Finally, since our algebra system does not yet 

handle calculus, problems were simplified to 

avoid it.   

Predicate calculus representations for 22 

problems and worked solutions were created: 7 

from linear mechanics, 7 from rotational 

mechanics, 6 from electrical systems, 2 from 

thermal systems.  The four domain theories 

together include 33 equation schemas and 56 

quantities. 

6.2 Method 

The base domain for this experiment is linear 

mechanics, because it is the domain most 

students learn first.  The Companion’s case 

library contained the 7 linear mechanics 

problems and worked solutions.  The base 

domain theory consisted of the equation 

schemas and control knowledge necessary to 

solve these 7 problems.  The target domains are 

rotational, electrical, and thermal systems.  The 

initial target domain theories include only the 

non-analogous equation schemas necessary to 

solve the problems (e.g. equations for 

computing the moment of inertia of a rotating 

point) which are impossible to learn via 

analogy.  Notice that this is different than facts 

in the base which are not analogous to another 

domain – such facts should be ignored. 

This experiment tests performance on a per 

problem basis in four independent conditions.  

First, the original DTA algorithm was run on 

each problem (the DTA condition).  Second, 

each problem was presented with the analogous 

linear mechanics worked solution (DTA+B 

condition).  The third and fourth conditions 

address the effects of persistent mappings.  The 

DTA+PM condition provides each problem 

with the persistent mappings resulting from a 

successful run of DTA on the most similar 

problem.  In the DTA+PM+B condition, both 

the persistent mappings and the correct 

retrieval were provided. 

Each problem was scored as correct if the 

Companion was able to solve the target 

problem after the transfer.  Retrievals were 

scored as correct if they found the closest 

analogous problem, and incorrect otherwise.   

6.3 Results 

Table 2 shows the results of the four conditions 

for each of the three transfer domains.   All 

correctness results are statistically significant, 

since the odds of guessing a correct floating 

point value is essentially zero.  Only retrieval 

for DTA+PM is statistically significant (p < 

0.02), given only seven cases in the case 

library.  In condition DTA, only 3 of the 15 

target problems (20%) were solved correctly.  

This is because in that condition the correct 

analog was retrieved only 33% of the time: In 

DTA+B, the Companion solved 12 problems 

(80%).   Condition DTA+PM shows that 

persistent mappings alone provide some value, 

retrieving 6 instead of 5 analogs correctly, and 

solving 4 instead of three problems.  When 

both the relevant base and persistent mappings 

are provided (DTA+PM+B), the Companion 

does quite well, solving 13 problems (87%), 

showing that while having the correct analog 

provides most of the improvement, persistent 

mappings are still of value even in that case. 

Table 2: DTA Results 
Condition Rotational Systems (7) Electrical Systems (6) Thermal Systems (2) Total 

Correct Retrieval Correct Retrieval Correct Retrieval Correct Retrieval 

DTA 2(29%) 3(43%) 1(17%) 2(33%) 0(0%) 0(0%) 3 (20%) 5 (33%) 

DTA+B 6(86%) n/a 4(67%) n/a 2(100%) n/a 12 (80%) n/a 

DTA+PM  3(43%) 3(43%) 1(17%) 3(50%) 0(0%) 0(0%) 4 (27%) 6 (40%) 

DTA+PM+B 7(100%) n/a 4(67%) n/a 2(100%) n/a 13 (87%) n/a 

 



6.4 Discussion 

Overall, the results show that DTA is able to 

transfer knowledge when it gets a correct 

retrieval, and that persistent mappings improve 

its performance.  We examine the retrieval, 

transfer, and persistent mapping results in more 

detail next. 

6.4.1 Retrieval 

The primary cause for transfer failures was the 

inability to retrieve an analogous worked 

solution.  This is consistent with psychological 

findings regarding the difficulties in the 

spontaneous retrieval of cross-domain 

analogies (Gick and Holyoak 1983).  An 

inspection of the retrieval failures indicates that 

every failure occurred during the 1
st
 stage of 

MAC/FAC.  Given that the only overlap 

between most worked solution pairs between 

these domains are the “connective tissue” 

predicates of the worked solutions, there is 

little to discriminate on.  Persistent mappings 

helped somewhat, by increasing the amount of 

predicate overlap, but this only mattered for 

one of the cases. 

In this experiment, the Companion was only 

allowed one retrieval attempt.  Allowing 

multiple retrievals could of course potentially 

improve performance, but we leave this 

possibility to future work. 

6.4.2 Mapping and Transfer 

Transfer depends upon the domain mapping 

learned from the analogy between worked 

solutions.  Of the 41 problems in which DTA 

used the correct retrieval (adding across 

conditions), transfer was successful on 32 

(78%) of them.  The 9 worked solution 

mapping failures can be divided into three 

types: merge failures, one-to-one failures, and 

incomplete mapping failures.  Merge failures 

occur when the mapping fails to include a 

necessary correspondence, because another 

correspondence already in the mapping blocks 

it.  Recall that during SME, local match 

hypothesis are merged into structurally 

consistent global mappings.  If two local 

matches include the same target element, only 

one can be included worked solution mapping.  

This can result in a failure to include important 

correspondences in the domain mapping. 

One-to-one failures result from one-to-one 

constraint violations in the analogy between 

worked solutions.  For example, the analogous 

equation schemas for kinetic energy (Ke = 

.5mv
2
) and inductance energy (E = .5Li

2
) each 

include three participants types.  If the linear 

mechanics worked solution contains one entity 

for each of the participants, but the electrical 

worked solution includes only two entities, 

with one entity being used for multiple 

participants, then the resulting domain mapping 

will not include all the participant types.  

Consequently, the schema will not be 

transferred. 

Incomplete mappings occur when the cross-

domain analogy transfers only some of the 

equation schemas required to solve the target 

problem.  This error occurred on one electrical 

problem, which requires equation schemas for 

both electrical capacitance, V=q/C, and 

capacitor energy, Ce=.5(q
2
)/C.  Although the 

cross-domain analogy successfully transfers the 

equation schema for electrical capacitance, the 

verification step fails, and the transferred 

knowledge and domain mapping are thrown 

out. 

As the next section describes, persistent 

mappings allow DTA to overcome merge 

failures and incomplete mapping failures. 

6.4.3 Persistent Mappings 

The results from conditions DTA+PM and 

DTA+PM+B demonstrate that persistent 

mappings support incremental learning of a 

target domain theory through multiple cross-

domain analogies.  Furthermore, they improve 

cross-domain retrieval and mapping.  In 

DTA+PM, persistent mappings enabled an 

additional correct retrieval.  Persistent 

mappings prevent worked solution mapping 

failures.  By already including useful 

correspondences between the domain theories, 

persistent mappings can avoid merge failures.  

By incorporating already learned aspects of the 

new domain, they are able to overcome 

incomplete mapping failures as well. 

An underlying assumption of persistent 

mappings is that the entire cross-domain 



analogy satisfies the one-to-one constraint.  

That is, each element of the base domain theory 

corresponds to at most one element in the 

target domain theory.  This assumption was not 

valid in this experiment, causing DTA to fail 

on the electrical power problem in the 

persistent mapping conditions even though it 

succeeded in previous conditions.   Relaxing 

persistent mappings is thus an important 

direction for future work. 

7 RELATED WORK 

The major threads of related work concern 

Cognitive Science models of analogy and AI 

transfer learning 

7.1 Cognitive Science Simulations 

The closest system to ours is Falkenhainer’s 

(1988) PHINEAS.  PHINEAS used 

comparisons of (simulated) behavior to create 

an initial cross-domain mapping that was 

subsequently used to create a partial theory for 

the new domain.   DTA differs by employing a 

more psychologically plausible retrieval 

mechanism and persistent mappings to 

incrementally construct complex cross-domain 

analogies. 

Holyoak and Thagard's PI (1989) used a 

pragmatic theory of analogy to model solving a 

variation of the radiation problem through 

schema induction.  PI only used analogy during 

problem-solving, and its retrieval model was 

never extensively tested.  On the other hand, 

DTA makes analogies between examples as 

well as domain theories themselves, enabling 

the transfer of domain knowledge not explicitly 

referenced in the example (e.g., control 

knowledge in this experiment).  Moreover, 

DTA tests its learned knowledge, and uses it to 

solve new problems from the target domain, 

whereas PI did neither. 

Kühnberger et al. (2008) and Schwering et 

al. (2008) describe integrated architectures for 

achieving human-level intelligence in which 

analogy plays an important role.  Like our 

work, these approaches emphasize ubiquity of 

analogical processing and the integration of 

analogy with other reasoning processes.  A 

major point of departure between the above 

simulations and DTA is the scale of the tasks, 

which presents a major challenge for analogical 

learning systems (Forbus 2001). 

7.2 Transfer Learning 

Transfer learning is the improvement in 

performance on a new task through the transfer 

of knowledge from a related source task.  

Hinrichs & Forbus (2007) describe how 

analogy can be used to transfer learned 

qualitative models between scenarios in a turn 

based strategy game.  As in DTA, examples are 

used to find the domain mapping between 

source and target domains.  ICARUS has been 

augmented with a representation mapping 

algorithm to handle transfer tasks with different 

relations (Shapiro et al. 2008).  While 

ICARUS’s methods require abstract domain 

theories in both the source and target tasks, 

DTA can transfer abstract knowledge from the 

source domain with a single target example. 

Lui and Stone (2006) use a version of SME 

to accelerate learning of state action policies in 

novel but similar tasks within the keep-away 

soccer domain.  Taylor (2008) emphasizes the 

importance of the mapping between the states 

and actions of the source and target domains.  

Unlike these one shot transfers, DTA is an 

iterative process in which the target knowledge 

and domain mapping are incrementally verified 

and extended.  For a more direct comparison, it 

is necessary to integrate DTA with domain 

learning techniques.  This is an important 

direction for future research. 

8 CONCLUSIONS 

Using domain general methods of similarity-

based retrieval and analogical matching, 

Domain Transfer via Analogy (DTA) enables 

the transfer of equation schemas and control 

knowledge between linear mechanical, 

rotational mechanical, electrical, and thermal 

domain theories.  Persistent mappings support 

this process by building up a complex cross-

domain analogy from successful local 

mappings.  The results of our experiment, 

existing psychological research on memory 

retrieval, and quotations from common 

textbooks, all support our hypothesis that cross-



domain analogical learning is an iterative 

process which in educational settings 

incorporates advice.  

This paper suggests several future directions.  

First, self-modeling and task modeling is 

needed to decide when multiple retrievals are 

worth performing. Second, model-based 

diagnosis (de Kleer & Kurien 2003) could be 

used to debug analogies that go awry, allowing 

them to be fixed rather than discarded.  Third, 

DTA experiments have focused on physics, but 

cross-domain analogical learning is useful in 

many other domains (e.g., strategy games and 

training simulators).  Finally, since DTA is an 

iterative process which takes advice, 

integrating DTA in training simulators would 

enable AI agents to learn across a range of 

tasks and act as intelligent assistants providing 

feedback across scenarios and simulations. 
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